https://www.youtube.com/watch?v=JO29QpNQYqM

limn→∞(                 )
    -1          -n
 sinn2 + ...+ sinn2 limn→∞(            )
 -1        n-
 n2 + ...+ n2
= limn→∞1+ ...+ n
---n2----
= limn→∞n(n+ 1)
--2n2---
= limn→∞n+ 1
-2n--
= 1
2.

With slightly more rigour:

limn→∞(    1           n)
 sin-2 + ...+ sin-2
    n           n limn→∞ k=1n{ k       ( 1 )}
  -2 + k2O --4
  n        n
= limn→∞ k=1n{            (   )}
  k-+ O (n3)O   1-
  n2           n4
= limn→∞{            (  )}
 n(n-+-1)     1-
   2n2   + O  n
= limn→∞{1    1    ( 1) }
 - + ---+ O  --
 2   2n      n
= 1
2.